Jets at the LHC From Run I to Run II and beyond

Grégory Soyez

IPhT, CEA Saclay

Prague October 22 2015

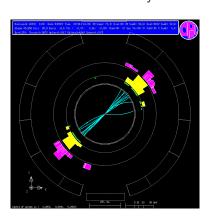
Brief plan

- Basic framework
 Jets at the LHC, anti-k_t algorithm, FastJet
- Challenge 1: pileup
 - Run I: Jet area-median pileup subtraction
 - Towards Run II: noise-reduction ans SoftKiller

- Challenge 2: jet substructure
 - New paradigm for jets
 - boosted jet tagging

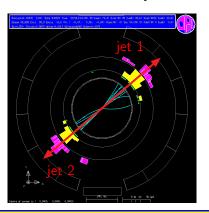
Jets: basic concepts

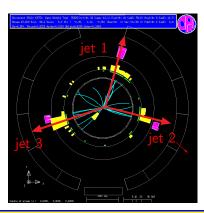
Final-state events are pencil-like already observed in e^+e^- collisions:



Jets

Final-state events are pencil-like already observed in e^+e^- collisions:

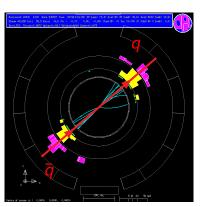


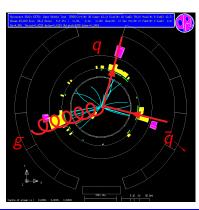


"Jets" ≡ bunch of collimated particles

Jets

Final-state events are pencil-like already observed in e^+e^- collisions:

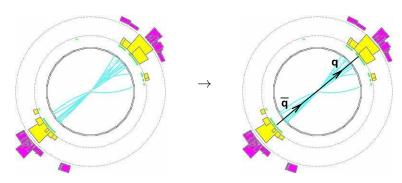




"Jets" \equiv bunch of collimated particles \cong hard partons

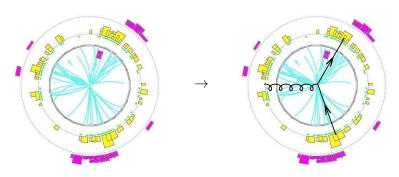
"Jets" \equiv bunch of collimated particles \cong hard partons

"obviously" 2 jets



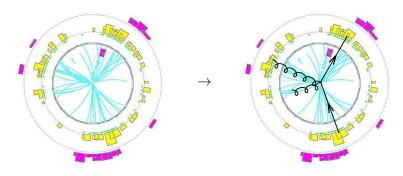
"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets?



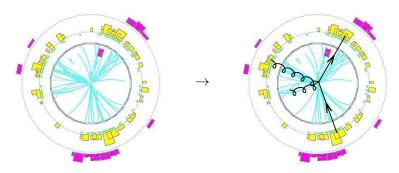
"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?



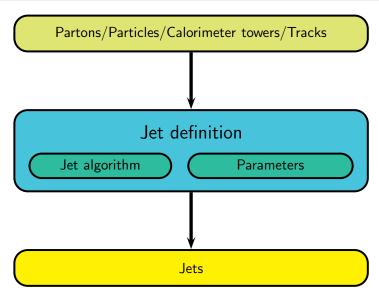
"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets... or 4?



- "collinear" is arbitrary (typically needs a resolution parameter)
- "parton" concept strictly valid only at LO

Jet definition



[M.Cacciari, G.Salam, GS, 2008]

(Anti- k_t) algorithm

From all the objects, define the distances

$$d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \qquad d_{iB} = p_{t,i}^{-2} R^2$$

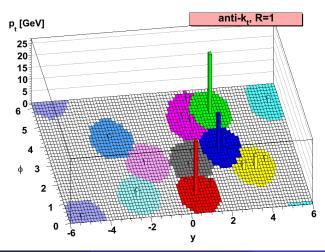
- repeatedly find the minimal distance if d_{ij} : recombine i and j into k = i + j if d_{iB} : call i a jet
- One parameters: *R* ("jet radius").

Notes

- Different R at the LHC. CMS: 0.5,0.7,0.4(soon); ATLAS: 0.4,0.6
- Several nice properties:
 - IRC-safe (i.e. can be computed theoretically in pQCD)
 - produces cone-like (circular) jets
 - fast

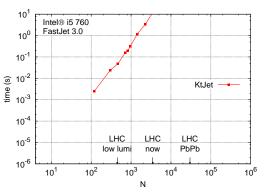
The anti- k_t jets

Main property: hard jets are circular



FastJet (1/2)

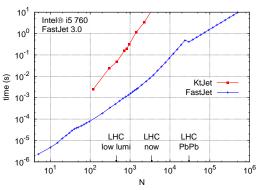
[M.Cacciari, G.Salam, 2005]



• Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles

FastJet (1/2)

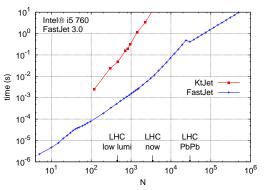
[M.Cacciari, G.Salam, 2005]



- Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles
- Now: (anti-) k_t very fast: $\mathcal{O}(N^2)$ or even $\mathcal{O}(N \log(N))$

FastJet (1/2)

[M.Cacciari, G.Salam, 2005]



- Tevatron era: k_t too slow: $\mathcal{O}(N^3)$ for N particles
- Now: (anti-) k_t very fast: $\mathcal{O}(N^2)$ or even $\mathcal{O}(N \log(N))$
- Fastjet 3.1: typically 5-50ms for LHC (with pileup and areas)

FastJet (2/2)

[M.Cacciari, G.Salam, GS, 2007-2015]

- Grown way beyond just fast recombinations:
 - plugins for used jet definitions
 - jet areas and background subtraction (see below)
 - tools for manipulating jets
 - more to come...
- FastJet 3.1.3 released in July 2015 see www.fastjet.fr
- Standard interface for jet physics for both theorists and experimentalists

Pileup mitigation

Pileup

$Z \rightarrow \ell^+\ell^-$ candidate at ATLAS

Low luminosity (bunch population)

Pileup

$Z \rightarrow \ell^+ \ell^-$ candidate at ATLAS

Low luminosity (bunch population)

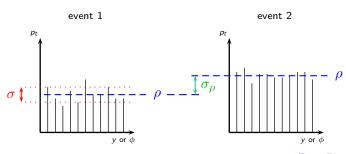
High luminosity (bunch population)

- many (soft) pp interactions with the hard one (here 25) LHC Run I: \sim 20-25, Run II: \lesssim 60, upgrades: \lesssim 200
- soft background in the whole detector

Basic characterisation

Pileup mostly characterised by 3 numbers (*):

- ρ : the average activity in an event (per unit area)
- σ : the intra-event fluctuations (per unit area)
- σ_{ρ} : the event-to-event fluctuations of ρ



Basic characterisation

Pileup mostly characterised by 3 numbers (*):

- ρ : the average activity in an event (per unit area)
- σ : the intra-event fluctuations (per unit area)
- \bullet σ_{ρ} : the event-to-event fluctuations of ρ

Jet of momentum p_t and area A:

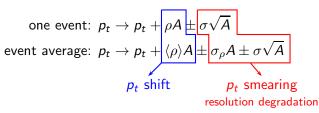
one event:
$$p_t o p_t + \rho A \pm \sigma \sqrt{A}$$
 event average: $p_t o p_t + \langle \rho \rangle A \pm \sigma_\rho A \pm \sigma \sqrt{A}$

Basic characterisation

Pileup mostly characterised by 3 numbers (*):

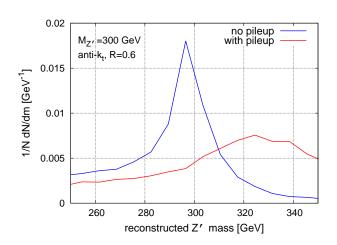
- ρ : the average activity in an event (per unit area)
- σ : the intra-event fluctuations (per unit area)
- \bullet σ_{ρ} : the event-to-event fluctuations of ρ

Jet of momentum p_t and area A:



^(*) valid also for the underlying event in heavy-ion collisions

Illustrative example



Subtraction methods (correct for the shift)

one subtracts a contribution from individual jets

subtracted	PU effects kept
constant p_t $(\langle ho A angle)$	both flucts + area flucts
$\langle ho angle imes A$	both flucts $(\sigma\sqrt{A} \& \sigma_{\rho}A)$
$\langle \rho \rangle_{per\ PU\ vertex} imes n_{PU} imes A$	$\sigma\sqrt{A}$ and part of $\sigma_ ho A$
$\rho_{\mathrm{event}} imes A$	only $\sigma\sqrt{A}$

Subtraction methods (correct for the shift)

one subtracts a contribution from individual jets

subtracted	PU effects kept more averaged
constant p_t ($\langle \rho A \rangle$)	both flucts + area flucts
$\langle ho angle imes A$	both flucts $(\sigma\sqrt{A}\ \&\ \sigma_{\rho}A)$
$\langle ho angle_{ m per\ PU\ vertex} imes n_{PU} imes A$	$\sigma\sqrt{A}$ and part of $\sigma_ ho A$
$ ho_{\mathrm{event}} imes A$	only $\sigma\sqrt{A}$
	'avent by event'
'event-by-event'	

Event-by-event determinations of the shift (are expected to) reduce the smearing effects of PU

Defining jet area

"Active" area definition:

- Add "ghosts" to the event:
 - particles with infinitesimal p_t
 - ullet on a grid (+ small random fluctuations) of cell area a_0

Defining jet area

"Active" area definition:

- Add "ghosts" to the event:
 - particles with infinitesimal p_t
 - on a grid (+ small random fluctuations) of cell area a_0
- Include the ghosts in the clustering

Defining jet area

"Active" area definition:

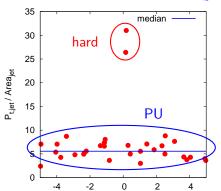
- Add "ghosts" to the event:
 - particles with infinitesimal p_t
 - on a grid (+ small random fluctuations) of cell area a_0
- Include the ghosts in the clustering
- If a jet contains N_g ghosts, its area is $N_g a_0$

Median-area-based subtraction

[M.Cacciari, G.P. Salam, 07; M.Cacciari, G.P. Salam, GS, 2008]

Estimation:
$$\rho_{\text{est}} = \underset{j \in \text{patches}}{\operatorname{median}} \left\{ \frac{p_{t,j}}{A_j} \right\}$$

Subtraction: $p_{t, \text{jet}}^{(\text{sub})} = p_{t, \text{jet}} - \rho_{\text{est}} A_{\text{jet}}$



per jet

per event

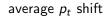
(typically)

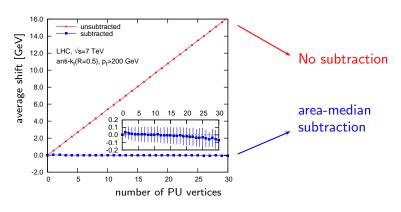
break the event in

patches of similar size

break the event in patches of similar size e.g. cluster with k_t or break into grid cells

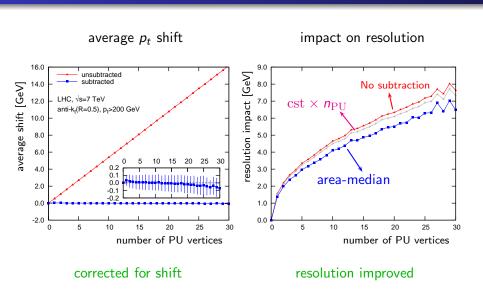
Subtraction benchmarks



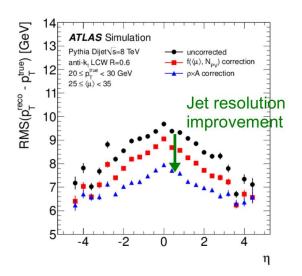


corrected for shift

Subtraction benchmarks



PU subtraction as seen in ATLAS



[B. Petersen, ATLAS Status report for the LHCC, 2013]

Further developments

Improvements/extensions of the basic method

Methods to handle positional dependence of ρ
 Directly relevant for the LHC (e.g. rapidity dependence)
 [M.Cacciari,G.Salam,GS,2010-2011]

• Subtraction for jet mass and jet shapes Important for jet tagging ("q v. g jet", b jet, top jet, $H \rightarrow b\bar{b}$)

[GS,G.Salam,J.Kim,S.Dutta,M.Cacciari,2013]

[P.Berta,M.Spousta,D.Miller,R.Leitner,2014]

Subtraction of fragmentation function (moments)
 Useful for quenching in PbPb collisions

IM Cassiari P Outropa C Salam CS 201

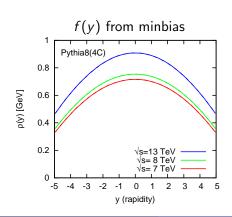
[M. Cacciari, P. Quiroga, G. Salam, GS, 2012]

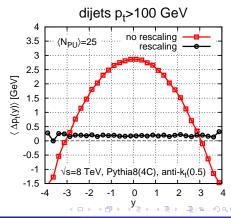
• Recommended setup: ρ estimation from a grid with cell-size=0.55 + appropriate rescaling to handle rapidity dependence

Rapidity dependence

$$\rho = \underset{j \in \mathrm{patches}}{\mathrm{median}} \left\{ \frac{p_{t,j}}{A_j} \right\} \qquad \longrightarrow \quad$$

$$\rho(y) = f(y) \underset{j \in \text{patches}}{\text{median}} \left\{ \frac{p_{t,j}}{A_j f(y_j)} \right\}$$





New techniques

Noise-reduction techniques

Overall idea

- ullet Try to further reduce the impact on resolution $\sigma_{\Delta p_t}$
- ullet Usually at the expense of biases on $\langle \Delta p_t
 angle$
- Requires more delicate tuning

Noise-reduction techniques

Overall idea

- Try to further reduce the impact on resolution $\sigma_{\Delta p_t}$
- Usually at the expense of biases on $\langle \Delta p_t \rangle$
- Requires more delicate tuning

Several methods

SoftKiller: remove low-p_t particles

 $[\mathsf{M}.\mathsf{Cacciari},\mathsf{G}.\mathsf{Salam},\mathsf{GS},\!14]$

- PUPPI: from CMS (charged tracks info + assignment probability)
 - $[\mathsf{D}.\mathsf{Bertolini}, \mathsf{P}.\mathsf{Harris}, \mathsf{M}.\mathsf{Low}, \mathsf{N}.\mathsf{Tran}, \mathsf{14}]$
- Jet Cleansing: charged tracks + subjets + little extra
 - $[\mathsf{D}.\mathsf{Krohn}, \mathsf{M}.\mathsf{Low}, \mathsf{M}.\mathsf{Schwartz}, \mathsf{L-T}.\mathsf{Wang}, \mathsf{13}]$
- Constituent Subtractor: ask Peter

[P.Berta, M.Spousta, D.Miller, R.Leitner, 2014]

SoftKiller

Recipe

Remove the softest particle in the event until $ho_{ ext{est}}=\mathbf{0}$

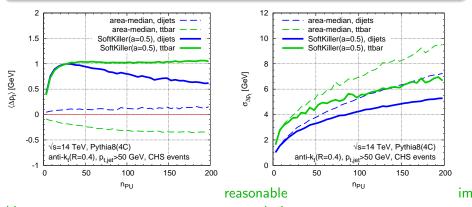
One parameter: a, the size of the grid used to estimate ρ

SoftKiller

Recipe

Remove the softest particle in the event until $ho_{ m est}=0$

One parameter: a, the size of the grid used to estimate ρ



bias

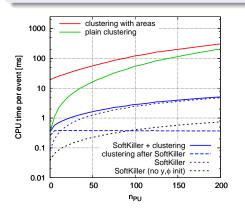
resolution

SoftKiller

Recipe

Remove the softest particle in the event until $ho_{ ext{est}}=0$

One parameter: a, the size of the grid used to estimate ρ



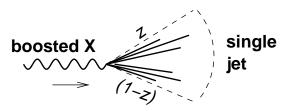
Allows very fast implementation

(see SoftKiller fastjet contrib)

Boosted jets

Boosted jets: main iea

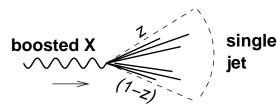
Object X decaying to hadrons



$$R \gtrsim \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}}$$

Boosted jets: main iea

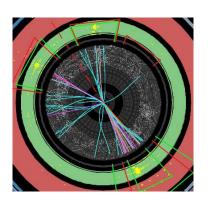
Object X decaying to hadrons



 $R \gtrsim rac{m}{
ho_t} rac{1}{\sqrt{z(1-z)}}$

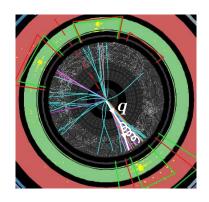
If $p_t \gg m$, reconstructed as a single jet

How to disentangle that from a QCD jet?

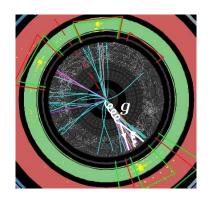


What jet do we have here?

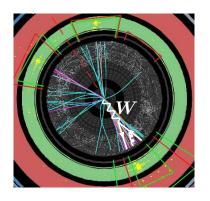
• a quark?



- a quark?
- a gluon?



- a quark?
- a gluon?
- a W/Z (or a Higgs)?

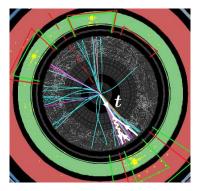


- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?



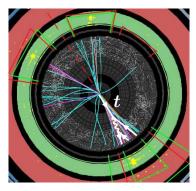
What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?



Source: ATLAS boosted top candidate

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?



Source: ATLAS boosted top candidate

Paradigm shift: a jet can be more than a quark or gluon

Boosted jets: applications

Many applications: (examples)

- ullet 2-pronged decay: W o qar q, H o bar b
- ullet 3-pronged decay: t o qqb, $ilde{\chi} o qqq$
- busier combinations: ttH
- ullet new physics: e.g. R-parity violating $\chi o qqq$, boosted tops in SUSY

Boosted jets: applications

Many applications: (examples)

- ullet 2-pronged decay: W o qar q, H o bar b
- ullet 3-pronged decay: t o qqb, $ilde{\chi} o qqq$
- busier combinations: ttH
- ullet new physics: e.g. R-parity violating $\chi o qqq$, boosted tops in SUSY

Increasingly important:

- Increasing LHC energy
- Increasing bounds/scales
- More-and-more discussions about yet higher-energy colliders

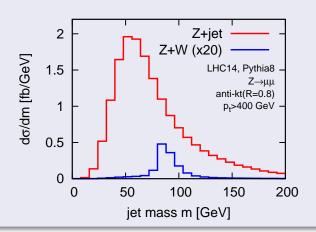
More and more boosted jets Needs to be under control

Boosted jets

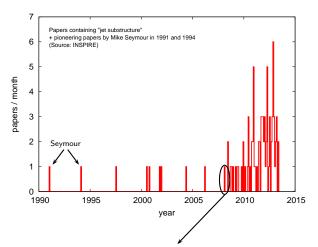
How to proceed?

Naive ideas do not work!

looking at the jet mass is not enough



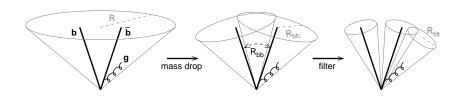
A lot of activity since 2008



Jet substructure as a new Higgs search channel at the LHC

Jon Butterworth, Adam Davison, Mathieu Rubin, Gavin Salam, 0802.2470

A lot of activity since 2008



Many tools:

mass drop; filtering, trimming, pruning; soft drop, *Y*-splitter; *N*-subjettiness, planar flow, energy correlations, pull; Q-jets, ScJets; shower deconstruction; template methods; Johns Hopkins top tagger, HEPTopTagger, CASubjet tagging; ...

 $\frac{\text{Implementation:}}{\text{See www.fastjet.fr}} \ \text{Mostly in FastJet, fastjet-contrib and } 3^{\mathrm{rd}}\text{-party codes}$

Two major ideas

Idea 1:

Find $N = 2, 3, \dots$ hard cores

Works because different splitting

QCD jets: $P(z) \propto 1/z$

- ⇒ dominated by soft emissions
- ⇒ "single" hard core

Two major ideas

Idea 1:

Find N = 2, 3, ... hard cores Constrain radiation patterns

Works because different splitting

QCD jets: $P(z) \propto 1/z$

- ⇒ dominated by soft emissions
- ⇒ "single" hard core

ldea 2: Constrain radiation patterns

Works because different colours

Radiation pattern is different for

- colourless $W \to q\bar{q}$
- ullet coloured g o qar q

Two major ideas

Idea 1:

ldea 2: Find N = 2, 3, ... hard cores Constrain radiation patterns

Works because different splitting

QCD jets: $P(z) \propto 1/z$

- ⇒ dominated by soft emissions
- ⇒ "single" hard core

Works because different colours

Radiation pattern is different for

- colourless $W \to q\bar{q}$
- coloured $g \rightarrow q\bar{q}$

A few key approaches:

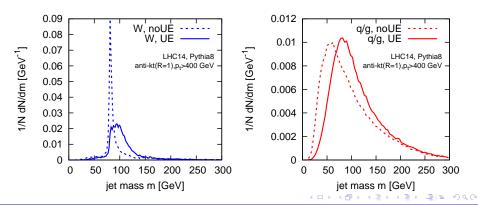
- uncluster the jet into subjets/investigate the clustering history
- 2 use jet shapes (functions of jet constituents),...

Grooming

Fat Jets

One usually work with large-R jets $(R \sim 0.8 - 1.5)$

⇒ large sensitivity to UE (and pileup)



Grooming

Fat Jets

One usually work with large-R jets ($R \sim 0.8-1.5$)

⇒ large sensitivity to UE (and pileup)

"grooming" techniques reduce sensitivity to soft-and-large-angle

Example 1: Filtering/trimming

- re-cluster the jet with the k_t algorithm, $R = R_{\rm sub}$
- Filtering: keep the $n_{\rm filt}$ hardest subjets

[J. Buterworth, A. Davison, M. Rubin, G. Salam, 08]

ullet Trimming: keep subjets with $p_t > f_{\text{trim}} p_{t, \text{jet}}$ [D.Krohn, J. Thaler, L-T.Wang, 10]

Methods for finding hard cores

Example 2: (modified) mass-drop tagger ((m)MDT)

- start with a jet clustered with Cambridge/Aachen
- ullet undo the last splitting $j
 ightarrow j_1 + j_2$
- if $\max(p_{t1}, p_{t2}) > z_{\text{cut}}p_t$, j_1 and j_2 are the 2 hard cores otherwise, continue with the hardest subjet
- Original version also imposed a mass-drop: $\max(m_1, m_2) < \mu m$

[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08; M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

Methods for finding hard cores

Example 2: (modified) mass-drop tagger ((m)MDT)

- start with a jet clustered with Cambridge/Aachen
- ullet undo the last splitting $j
 ightarrow j_1 + j_2$
- if $\max(p_{t1}, p_{t2}) > z_{\text{cut}}p_t$, j_1 and j_2 are the 2 hard cores otherwise, continue with the hardest subjet
- Original version also imposed a mass-drop: $\max(m_1, m_2) < \mu m$

[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08; M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

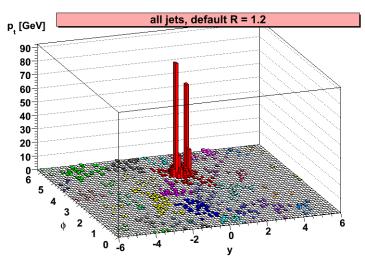
SoftDrop

Same de-clustering procedure as the mMDT but angular-dependent cut

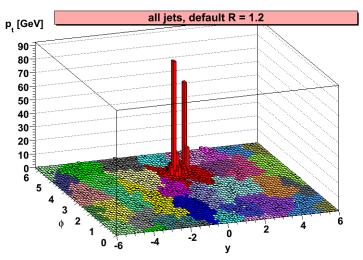
$$\max(p_{t1},p_{t2})>z_{\mathrm{cut}}p_t(\theta_{12}/R)^{\beta}$$

[A. Larkoski, S. Marzani, J. Thaler, GS, 14]

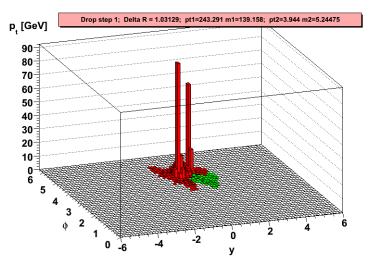
Start with the jets in an event



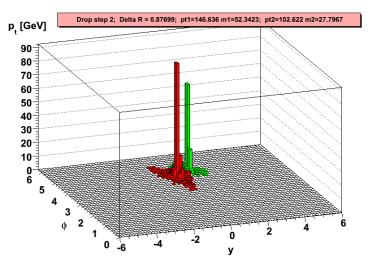
This is what they look like with their area



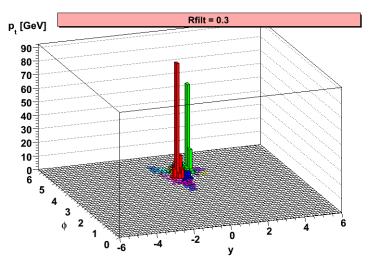
Take the hardest, apply a step of mass-drop



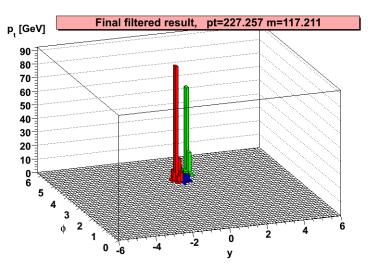
Failed... iterate the mass drop



Good... Now recluster what is left with a smaller R



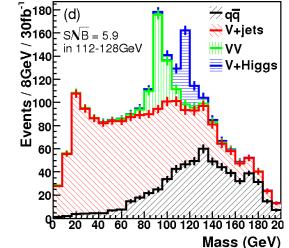
And keep only the 3 hardest



MassDrop for $H o bar{b}$ searches

[J. Buterworth, A. Davison, M. Rubin, G. Salam, 08]

This is the kind of Higgs reconstruction one would get



Constraining radiation

Example 3: N-subjettiness

Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or optimal]

$$\tau_N^{(\beta)} = \frac{1}{p_T R^{\beta}} \sum_{i \in \text{jet}} p_{t,i} \min(\theta_{i,a_1}^{\beta}, \dots, \theta_{i,a_n}^{\beta})$$

- Measure of the radiation from N prongs
- $\tau_{N,N-1} = \tau_N/\tau_{N-1}$ is a good variable for N-prong v. QCD

Constraining radiation

Example 3: N-subjettiness

Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or optimal]

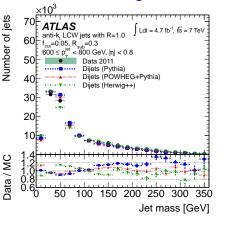
$$\tau_N^{(\beta)} = \frac{1}{p_T R^{\beta}} \sum_{i \in \text{jet}} p_{t,i} \min(\theta_{i,a_1}^{\beta}, \dots, \theta_{i,a_n}^{\beta})$$

- Measure of the radiation from N prongs
- $\tau_{N,N-1} = \tau_N/\tau_{N-1}$ is a good variable for N-prong v. QCD

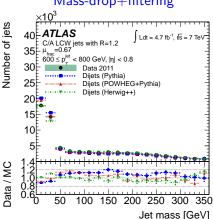
In practice

Tools are

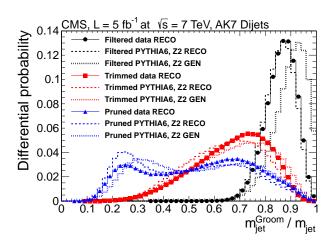
- developed/tested on Monte-Carlo simulations
- validated at the LHC (QCD backgrounds)



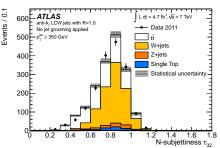
Mass-drop+filtering



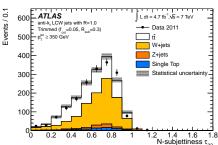
("Groomed" mass)/(plain mass)



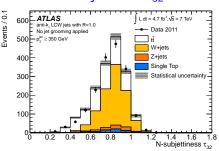
N-subjettiness τ_{32}



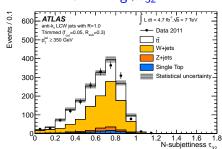
trimming+ τ_{32}



N-subjettiness τ_{32}



trimming+ τ_{32}

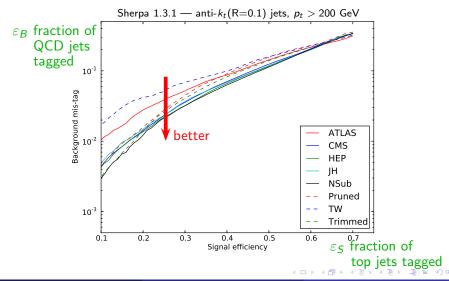


In a nutshell

- decent agreement between data and Monte-Carlo
- but some differences are observed

Example 2: top tagging MC study

[Boost 2011 proceedings]



Now,... one can get creative...

Finding *N* prongs works

Constraining radiation works

Now,... one can get creative...

Finding N prongs works

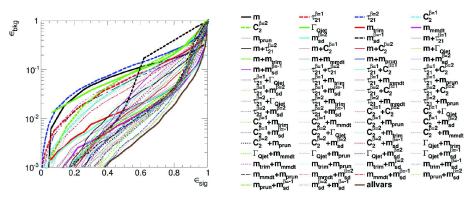
Constraining radiation works

Why not combining the two?

... or not?

[Boost 2013 WG]

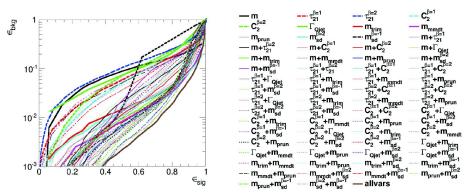
W v. q jets: combination of "2-core finder" + "radiation constraint"



... or not?

[Boost 2013 WG]

W v. q jets: combination of "2-core finder" + "radiation constraint"



- Combination largely helps
- details not so obvious

STOP and think

can we stop blindly running Monte-Carlo and understand things better (from first-principle QCD)?

Idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Analytic/first-principle tools have a larege potential

- Understand the underlying physics
- Infer how to improve things further
- provide robust theory uncertainties (competition with performance?)

Idea

Empirical Monte-Carlo approach is limited

- Hard to extrapolate parameters
- No understanding of the details

Analytic/first-principle tools have a larege potential

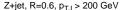
- Understand the underlying physics
- Infer how to improve things further
- provide robust theory uncertainties (competition with performance?)

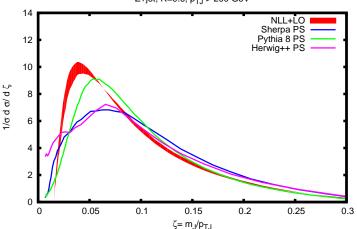
Requires QCD techniques

- $\rho = m/(p_t R) \ll 1 \Rightarrow \text{we get } \alpha_S \log^{(2)}(1/\rho)$ $\Rightarrow \text{need resummation}$
- matching with fixed-order for precision
- some nice QCD structures around the corner

Example 1:: the jet mass

Can reach high precision

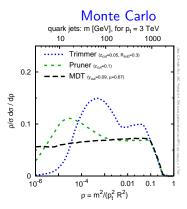




Monte-Carlo v. analytic

[M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

First analytic understanding of jet substructure:



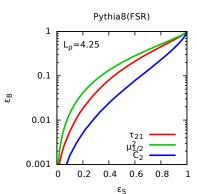
Analytics analytics quark jets: m [GeV], for pt = 3 TeV 10 100 1000 plain jet mass Trimmer (Z_{0.0}=0.1, R_{0.0}=0.2) Pruner (Z-u=0.1) MDT (y_{out}=0.09, μ=0.67) 0.2 dp / dp o/c 0.1 10⁻⁴ 10⁻⁶ 0.01 0.1 $\rho = m^2/(p_t^2 R^2)$

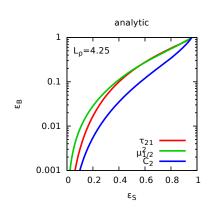
- Similar behaviour at large mass/small boost (region tested so far)
- Significant differences at larger boost

Monte-Carlo v. analytic

 $[\mathsf{M.Dasgupta}, \mathsf{L.Sarem\text{-}Schunk}, \mathsf{GS}, \mathsf{15}]$

For jet shapes:





Summary: take-home messages

Generic jet concepts

- ullet anti- k_t used almost everywhere, IRC-safe and fast
- alternatives for specific cases

Pileup mitigation

- Area-median subtraction used in Run I: unbiased and efficient
- Alternative methods (e.g. SoftKiller). Better resolution but need more tuning

Boosted jets

- More and more relevant
- Many techniques around, validated at Run I
- First-principle understanding has a large potential for more surprises

Tools: who? where?

Tool	Who ¹	Where
Mass-Drop	†Butterworth, Davison, Rubin, Salam	fj::MassDropTagger
	†Dasgupta, Fregoso, Marzani, Salam	fj::contrib::ModifiedMassDropTagger
Filtering	†Butterworth, Davison, Rubin, Salam	fj::Filter
Trimming	†Krohn, Thaler, Wang	fj::Filter
Pruning	†Ellis, Vermilion, Walsh	fj::Pruner
SoftDrop	†Larkoski, Marzani, Soyez, Thaler	fj::contrib::SoftDrop
N-subjettiness	†Thaler, Van Tilburg, Vermilion, Wilkinson	fj::contrib::Nsubjettiness
	†Jihun Kim	fj::RestFrameNSubjettinessTagger
Energy correlations	†Larkoski,Salam,Thaler	fj::contrib::EnergyCorrelator
Variable R	†Krohn, Thaler, Wang	fj::contrib::VariableR
ScJets	†Tseng, Evans	fj::contrib::VariableR
Johns Hopkins top tag	†Kaplan, Rehermann, Schwartz, Tweedie	fj::JHTopTagger
Jets without jets	†Bertolini, Chan, Thaler	fj::contrib::
CASubjet tagging	†Salam	fj::CASubJetTagger
Y-splitter	†Butterworth, Cox, Forshaw	fj::ClusterSequence::exclusive_subdmerge()
Planar flow	†Almeida, Lee, Perez, Sterman, Sung, Virzi	3 rd party
Pull	†Gallicchio, Schwartz	3 rd party
Q-jets	†Ellis, Hornig, Krohn, Roy and Schwartz	3 rd party
HEPTopTagger	†Plehn, Salam, Spannowsky, Takeuchi	3 rd party
TemplateTagger	†Backovic, Juknevic, Perez	3 rd party
shower deconstruction	†Soper, Spannowsky	$3^{ m rd}$ party

References are incomplete

Backup slides

$$\frac{1}{\sigma}\frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$

• We focus on small-R, $p_t R \gg m$

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$
$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$

- We focus on small-R, $p_t R \gg m$
- $P(z) = 2C_R/z$ up to subleading (log) corrections
- (1-z) only need to power (of $m/(p_tR)$) corrections

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$

$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$

$$\approx \frac{\alpha_s C_R}{\pi} \frac{1}{m^2} \log(p_t^2 R^2 / m^2)$$

- We focus on small-R, $p_t R \gg m$
- $P(z) = 2C_R/z$ up to subleading (log) corrections
- (1-z) only need to power (of $m/(p_tR)$) corrections
- we get a logarithmic enhancement

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$

$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$

$$\approx \frac{\alpha_s C_R}{\pi} \frac{1}{m^2} \log(p_t^2 R^2 / m^2)$$

- We focus on small-R, $p_t R \gg m$
- $P(z) = 2C_R/z$ up to subleading (log) corrections
- (1-z) only need to power (of $m/(p_tR)$) corrections
- we get a logarithmic enhancement
- ullet Or, for the integrated distribution, using $ho=m^2/(p_t^2R^2)$

$$P_1(>\rho) = \int_{\rho}^{1} dx \, \frac{1}{\sigma} \frac{d\sigma}{dx} = \alpha_s C_R \pi \, \frac{1}{2} \log^2(1/\rho)$$

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho=m^2/(\rho_t^2R^2)$, $\alpha_s\log^2(\rho)\sim 1$: no more perturbative!

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho=m^2/(p_t^2R^2)$, $\alpha_s\log^2(\rho)\sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_0^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_0^1 dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \left[\Theta(m_{12...n}^2 < \rho) + \text{virtual}\right]$$

"virtual" includes any number of the n gluons being virtual

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \left[\Theta(m_{12...n}^2 < \rho) + \text{virtual}\right]$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \prod_{i=1}^{n} \left[\Theta(z_i \theta_i^2 < \rho R^2) - 1\right]$$

- "virtual" includes any number of the *n* gluons being virtual
- Leading term: independent emissions

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho=m^2/(p_t^2R^2)$, $\alpha_s\log^2(\rho)\sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^{2}} \frac{d\theta_{i}^{2}}{\theta_{i}^{2}} \int_{0}^{1} dz_{i} P(z_{i}) \left(\frac{\alpha_{s}}{2\pi}\right)^{n} \left[\Theta(m_{12...n}^{2} < \rho) + \text{virtual}\right]$$

$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^{2}} \frac{d\theta_{i}^{2}}{\theta_{i}^{2}} \int_{0}^{1} dz_{i} P(z_{i}) \left(\frac{\alpha_{s}}{2\pi}\right)^{n} \prod_{i=1}^{n} \left[\Theta(z_{i}\theta_{i}^{2} < \rho R^{2}) - 1\right]$$

$$= \exp\left[-P_{1}(>\rho)\right]$$

- "virtual" includes any number of the n gluons being virtual
- Leading term: independent emissions
- Sudakov exponentiation

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

Leading log (LL)

Resums double logs $(\alpha_s \log^2(1/\nu))^n = (\alpha_s L^2)^n$:

$$P(<\mathbf{v}) = \exp\left[-P_1(>\rho)\right]$$

Note: including running-coupling corrections: $P_1 = \sum_{k=1}^{n} (\alpha_s L)^k L$

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

Leading log (LL)

Resums double logs $(\alpha_s \log^2(1/\nu))^n = (\alpha_s L^2)^n$:

$$P(<\mathbf{v}) = \exp\left[-P_1(>\rho)\right]$$

Note: including running-coupling corrections: $P_1 = \sum_{k=1}^{n} (\alpha_s L)^k L$

Physics idea

- Remember: (i) independent emissions, (ii) real and virtual emissions
- emissions "smaller" than v: do not contribute: real and virtual cancel
- emissions "larger" than v: real are vetoed
 ⇒ we are left with virtuals(=-real)

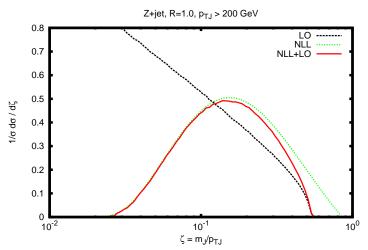
Next-to-leading log (NLL)

$$P(\langle v) = \exp\left[-g_1(\alpha_s L)L - g_2(\alpha_s L)\right]$$

- g₁ includes double logs (with running coupling)
- g₂ includes single logs
 - Finite piece in P(z)
 - Multiple (not independent) emissions contributing to v
 - 2-loop running coupling (+ scheme dependence)
 - Nasty non-global logs (out-of-jet emissions emitting back in)
- Can be matched to a fixed-order calculation

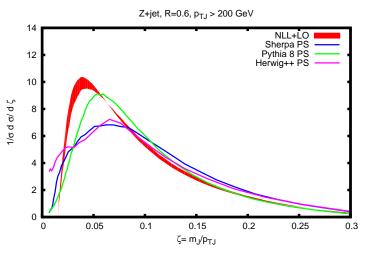
A few plots to illustrate what is going on

matching LO fixed-order with NLL resummation



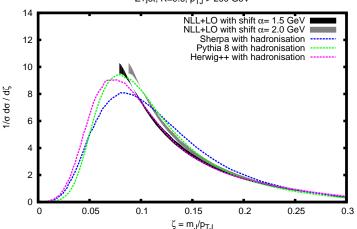
A few plots to illustrate what is going on

Comparison with parton shower



A few plots to illustrate what is going on

Including hadronisation

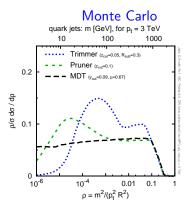


same approach for jet-substructure tools

Monte-Carlo v. analytic

[M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

First analytic understanding of jet substructure:



Analytics analytics quark jets: m [GeV], for pt = 3 TeV 10 100 1000 plain jet mass Trimmer (Zos=0.1, Ross=0.2) Pruner (Z-1, =0.1) MDT (y_{out}=0.09, μ=0.67) 0.2 dp / dp o/c 0.1 10⁻⁴ 10⁻⁶ 0.01 0.1

 $\rho = m^2/(p_t^2 R^2)$

- Similar behaviour at large mass/small boost (region tested so far)
- Significant differences at larger boost

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_1(>\rho) = \frac{\alpha_s C_F}{\pi} \int \frac{d\theta^2}{\theta^2} dz \, P_{gq}(z) \underbrace{\Theta(z > z_{\text{cut}})}_{\text{sym. cut}} \underbrace{\Theta(z(1-z)\theta^2 > \rho R^2)}_{\text{mass}}$$

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_1(>\rho) = \frac{\alpha_s C_F}{\pi} \int \frac{d\theta^2}{\theta^2} dz \, P_{gq}(z) \underbrace{\Theta(z > z_{\rm cut})}_{\text{sym. cut}} \underbrace{\Theta(z(1-z)\theta^2 > \rho R^2)}_{\text{mass}}$$

Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s C_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_1(>\rho) = \frac{\alpha_s C_F}{\pi} \int \frac{d\theta^2}{\theta^2} dz \, P_{gq}(z) \underbrace{\Theta(z > z_{\rm cut})}_{\text{sym. cut}} \underbrace{\Theta(z(1-z)\theta^2 > \rho R^2)}_{\text{mass}}$$

Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s C_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

• All-order resummation: exponentiation!

$$P_{\text{all orders}}(<\rho) = \exp\left[-P_1(>\rho)\right]$$

- Boosted limit: $p_t \gg m$ or $\rho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_1(>\rho) = \frac{\alpha_s C_F}{\pi} \int \frac{d\theta^2}{\theta^2} dz \, P_{gq}(z) \underbrace{\Theta(z > z_{\text{cut}})}_{\text{sym. cut}} \underbrace{\Theta(z(1-z)\theta^2 > \rho R^2)}_{\text{mass}}$$

Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s C_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

• All-order resummation: exponentiation!

$$P_{\text{all orders}}(<\rho) = \exp\left[-P_1(>\rho)\right]$$

• single log in ρ !

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step:
 no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!
- Absence of problematic non-global logs

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!
- Absence of problematic non-global logs
- Non-perturbative corrections using similar techniques than previously

• Trimming:

- Same as mass-drop for $\rho \geq f_{\rm filt}(R_{\rm filt}/R)^2$
- ullet double log behaviour $(\log^2(1/
 ho)$ of plain jet mass for $ho < f_{\mathrm{filt}}(R_{\mathrm{filt}}/R)^2$

- Trimming:
 - Same as mass-drop for $\rho \geq f_{\rm filt}(R_{\rm filt}/R)^2$
 - double log behaviour $(\log^2(1/\rho))$ of plain jet mass for $\rho < f_{\rm filt}(R_{\rm filt}/R)^2$
- SoftDrop: essentially the same as mMDT but with double logs

- Trimming:
 - Same as mass-drop for $\rho \geq f_{\rm filt}(R_{\rm filt}/R)^2$
 - double log behaviour $(\log^2(1/\rho))$ of plain jet mass for $\rho < f_{\rm filt}(R_{\rm filt}/R)^2$
- SoftDrop: essentially the same as mMDT but with double logs

Stay tuned

First-principle understanding of jet substructure

- is still a young field but looks promising
- allows to understand what is going on
- allows control over th. uncertainties
- allows to introduce new, better, tools